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Abstract

Decomposition Approximations have in the past been 

successfully applied to the performance analysis of 

Preemptive Priority based GSM/GPRS networks. In this 

paper we propose a decomposition technique for the 

performance analysis of GSM/GPRS networks where 

GSM voice calls have non-preemptive priority over 

GPRS data packets. In other words when demand exists 

for GSM circuit switched channels the GPRS user can 

continue its transmission until the ending of packet 

transmission resulting in a delayed release of the 

channel. It is shown that such an approximation can be 

quite accurate in predicting both the impact of delayed 

release on GSM voice queuing as well as for 

comparison of immediate versus delayed release of 

channels on GPRS data queuing delays.1

1. Introduction 

A number of analytical techniques have been used in 

the past for the performance analysis of GPRS, where 

data packets share channel resources with GSM voice 

calls. Ni and Haggman [1] introduced the use of the 

decomposition method for analysis of GPRS networks, 

based on Ghani and Schwartz [2]. This method is based 

on the fact that holding times for GSM circuit switched 

services are much longer than the time required for 

transmitting GPRS packets (see also [9], [10]). Two 

alternatives may further exist termed as Immediate 

Release and Delayed Release as described in [1] and 

[3]. In the former case, the GPRS user is forced to stop 

transmission immediately upon the arrival of circuit 

switched calls, whereas in the latter case, the GPRS user 

is allowed to continue transmission until completion of 

packet transmission, and GSM voice calls would require 

queuing due to the delayed release of channels that are 

occupied by GPRS data packets. Hence in the former 

case GSM voice has preemptive priority over GPRS 

data, whereas in the latter case GSM voice has non-

preemptive priority over GPRS data. Most of the 

analytical analyses of GPRS such as [1], [4] - [8] have 

1 This work is based on the PhD thesis of Dr. Ghani that was 
supported by the National Science Foundation under Grant 
CDR-84-21402 and by the Office of Naval Research under 
Grant N00014-85-K0371. 

assumed the preemptive priority, Immediate Release 

alternative. Due to the intractable nature of the non-

preemptive priority analysis, wherever this alternative 

has been analyzed as in [3] and [6] it has been done via 

simulation only and no analytical model has been 

developed. In [7] and [8] the case with no channel de-

allocation has been analyzed implying that no queuing 

of GSM voice calls is allowed as required in the delayed 

release case. 

In this paper we propose to solve the non-

preemptive priority (Delayed Release) model, as we 

believe that an analytical model for this has not been 

developed, and it may be useful to analyze this case as 

well. Hence we develop an approximation model for 

analyzing the Delayed Release alternative, for single-

slot GPRS, and propose a new technique based on the 

decomposition approximation introduced in [2]. In this 

scenario circuit switched GSM voice calls have non-

preemptive priority over the GPRS data and hence GSM 

voice calls experience both blocking and queuing.  

2. System Model 

We assume that N  physical transmission channels 

are available in the system. Of these 
dN are dedicated 

for GPRS data, and 
dv NNN  are shared by circuit 

switched GSM voice and GPRS data, with GSM voice 

having non-preemptive priority over GPRS data. If the 

number of GSM voice calls in the system is less than 

vN , then a new call is accepted, i.e. it is not blocked. 

After being accepted, if one or more of these 
vN

channels are free then the call is transmitted. If on the 

other hand, none of the 
vN  channels are free, implying 

that the number of GPRS data packets in service is 

greater than 
dN , then the call is queued, waiting for a 

GPRS data packet or GSM voice call to complete 

service.

The arrival process of voice and data are 

approximated by a Poisson arrival process, with average 

arrival rates of 
dv ,  respectively, and the holding 

times, neglecting the granularity of the frame structure, 

are approximated by an exponential distribution, with 

average holding time of 
dv ,  respectively. Further, 
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we also assume that the queued GSM voice calls do not 

wait endlessly on queue, but instead stay in the queue 

for a random amount of time . If they are not served 

by the end of this time period then they leave the queue, 

i.e. the caller hangs up. In the following analyses, we 

make the simplifying assumption that  is 

exponentially distributed with mean equal to the holding 

time of a call, i.e. 
vE 1)( .

The system described above can be modeled by a three 

dimensional Markov chain )('),(),( tDtDtV , whose 

steady state probabilities 
',, jjiP  are desired to be found: 

itV )( Total number of circuit switched GSM     

                 voice calls, 
vNi ,,0 ;

jtD )( Total number of GPRS data packets in  

                   the system, Mj ,,0 ;

')(' jtD Number of GPRS data packets in  

                   service, Nj ,,0' .

If we let )(tVQ
be the number of queued GSM voice 

calls at time t , then )(tVQ
 is given by 

))('()(,0max)( tDNtVtVQ
.       (2.1) 

Note that )(tV  can only take values in the range 0

to 
vN , hence for 

dNtD )(' , )(tVQ
 is always zero. We 

also define M as the maximum number of GPRS data 

packets that are allowed in the system.  We henceforth 

use )',,( jji  as a shorthand notation to denote the state 

')(',)(,)( jtDjtDitV .

Now the set of possible states S , of the Markov 

chain )('),(),( tDtDtV is given by: 

NjjiNjMjNijjiS v ,min',min;0;0:',,

.     (2.2) 

The minimum value of 'j  for Sjji ',,  occurs 

when none of the GSM voice calls are queued. i.e. 

0)(tVQ
, and the maximum occurs when GPRS data is 

occupying as many GSM voice channels as possible. 

The following is an example of the notation that we 

shall henceforth use for denoting a subset of S :

NtDNtDtVtDtDtVNNj )(',)(,1)(:)('),(),(,,1

.

Figure 1 shows the state transition diagram for 

N =3,
vN =2,

dN =1 and 5M . Using the 

MNNN dv ),(  shorthand notation of [2], this system can 

also be described as a 3(2,1)5 Non-preemptive GPRS

system. 

We now partition the state space S  as follows. Let 

QS  be the set of Queued states, i.e. those in which one 

or more GSM voice calls are queued 0)(tVQ
. These 

are shown with the solid circles in figure 1. The rest of 

the states in S  are denoted by NS , the set of Non-

queued states, i.e. the states in which no GSM voice 

calls are queued. These are shown as the solid dots in 

the figure. Using figure 1, one may now write down all 

possible transition rates (as done in the Appendix). 

3. GSM Voice call analysis 

Since we have assumed that queued GSM voice 

calls hang up at the same rate as the rate at which calls 

in transmission are completed, the total rate at which 

GSM voice calls leave the system depends only on 

)(tV . The GSM voice arrival process is already 

independent of the GPRS data process. This implies that 

the total number of GSM voice calls in the system )(tV

is independent of the GPRS data process and the 

equilibrium distribution of )(tV  is simply that of an 

vv NNMM ///  queuing system which is given by the 

Erlang-B formula: 
vN

j

j

v

i

v
v j

i
ip

0

!
!

)(    for   
vNi ,,1,0 ,

 where 
vvv / .  (3.0) 

The GSM voice blocking probability, i.e. the 

probability that an arriving GSM voice call is not 

accepted into the system is: 

vv N

i

i

v

v

N

v
vvBV i

N
NpP

0

!
!

)(  (3.1) 

But now in addition to GSM voice blocking, we also 

have GSM voice queuing, and )(tVQ
 the number of 

queued GSM voice calls does depend on the GPRS data 

process. Thus in order to determine the queuing delay 

for GSM voice, we need to solve the complete Markov 

Chain )('),(),( tDtDtV . This is of course also 

necessary to evaluate the GPRS data performance since 

)(tD  and )(' tD  clearly depend on )(tV .

Due to the existence of unidirectional transitions, as 

shown in figure 1, it is clear that the Markov chain 

)('),(),( tDtDtV  is not reversible and that a simple 

closed form solution does not exist. The problem also 

has greater complexity than the equivalent preemptive 

problem, solved in [2], due to the added dimension in 

the Markov chain by the queued GSM voice states. 

In order to find an approximate solution to the 

problem, we apply the decomposition technique to the 

problem. We make the underlying assumption of [2] 

that  defined as the ratio of GSM voice holding times 

to that of GPRS data is large, i.e.: 

1
/1

/1

d

v .

This is based on the fact that typical GSM voice 

calls occupy channels for 120 – 180 seconds, as 
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compared to GPRS data packets which are typically 

transmitted within 2 – 10 seconds (see [1]). 

The decomposition technique essentially assumes 

that the steady state behavior of such systems can be 

approximated by converting the multi-dimensional 

Markov chain into a hierarchy of group of aggregate

states, such that the interaction between the groups is 

small compared to the interaction within the groups. A 

group of states would thus comprise all the states for a 

fixed number of GSM voice calls. Hence for the 

duration of a GSM voice call, the technique assumes 

that the GPRS data process achieves steady state, and 

hence its equilibrium distribution may be approximated 

by ignoring the transitions between groups. 

4. Overview of the Approximation 

In the following sections we first present an 

overview of the overall technique used to find an 

approximate solution using the 3(2,1)5  example of 

figure 1. The detailed analysis appears in Appendix A.  

The first step in the decomposition approximation is 

to identify the group of aggregate states, as defined in 

[2], section III. In this case, as explained above, it is 

easy to see that these are the states for which )(tV  is 

constant. In figure 1 these are the states circled with a 

dotted line corresponding to the three aggregate states 

,0)(tV 1 and 2. We note that all transitions between

aggregates are in terms of 
v

and
v
, whereas all 

transitions within aggregates are in terms of 
d

and
d

.

We also note that since the equilibrium distribution of 

)(tV  is already known, as given by (3.0), the 

probability of being in an aggregate state is known 

exactly.

The next step in the decomposition technique is to 

find the decomposition solution to each one of the states 

within each aggregate state in isolation, i.e. after 

removing all the transitions between the aggregate 

states. In the following description, the labeling ‘(step I, 

part A/B)’ refers to the steps in Algorithm 1, described 

later in Appendix A. 

Decomposition for V(t) = 0. 

Step 0, Part A. (figure 2.0.A). For the aggregate 

state 0)(tV , consisting of states 0',0,0 jj ,

after isolation we get a simple 

5/3///// MMMNMM , birth-death process 

whose solution is easily found. 

If we now proceed via a simplistic application of 

decomposition to aggregate state 1)(tV , then we note 

that after elimination of all the transitions between 

aggregate states, the states belonging to QS , i.e. states 

)3,5,1(),3,4,1(),3,3,1( , become transient states since 

there are no longer any transitions from NS  to QS , but 

only transitions from QS  to NS . Hence the 

decomposition solution would give 0',, jjiP ,

QSjji )',,( , which would give a zero queuing delay 

for the GSM voice process. This would give a grossly 

inaccurate result, and so we must modify our technique.  

We observe that for all the states in 

NjNji ',,1 , i.e. states (1,3,3), (1,4,3), (1,5,3), 

(2,3,3), (2,4,3), and (2,5,3) in figure 1, the transitions 

into these states are only from the states in 

NjNji ',,0 , i.e. states (0,3,3), (0,4,3), (0,5,3) 

in figure 1. This fact is used in Proposition 1 of the 

Appendix to find an exact dependence of the 

equilibrium probabilities of states in NNj ,,1  on 

those of states in NNj ,,0 . But the equilibrium 

probabilities of the states NNj ,,0  were already 

approximated in step 0 above. Hence we can obtain an 

approximation to 
NNjiP ,,1

 using the approximate 

solution to 
NNjP ,,0

. The inaccuracy in 
NNjiP ,,1

 would 

be directly related to the inaccuracy in 
NNjP ,,0

 since 

the relationship between 
NNjiP ,,1

and
NNjP ,,0

 can be 

found exactly. Thus we have 

Step 0, Part B. (figure 2.0.B). Obtain solution to 

NNjiP ,,1
using exact dependence on 

NNjP ,,0
(shown

later in Proposition 1), whose solution was obtained 

earlier in step 0, Part A. 

Decomposition for V(t) = 1. 

Step 1, Part A. (figure 2.0.A). Having 

approximated 
NNjiP ,,1

we can now find a 

decomposition solution to the rest of the aggregate 

states in 1)(tV , by first isolating the aggregate states. 

We are then left with the rather unusual Markov chain 

shown in figure 2.1.A in which the equilibrium 

distribution to part of the Markov chain is already 

known. We can now solve for the equilibrium 

distribution of the remaining unknown states by writing 

the local balance equations at all the states 

NSjji )',,(  using the known equilibrium 

probabilities
NjP ,,1

. We thus find an approximate 

solution to the equilibrium probabilities of all the states 

in aggregate state 1)(tV . The details are developed in 

the Appendix. 

Step 1, Part B. (figure 2.1.B). The procedures used 

in step 0, part A can essentially be repeated to find all 

the equilibrium probabilities for states 

1,2,2 Nji , i.e. (2,2,2), (2,3,2), (2,4,2), and 

(2,5,2). The only difference is that in addition to using 

the known equilibrium probabilities of states 

(1,2,2),…,(1,5,2), we also use those of states (2,3,3), 
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(2,4,3), and (2,5,3) which were approximated in step 0, 

part B. 

Decomposition for V(t) = 2. 

Step 2, Part A. (figure 2.2.A). Finally we 

approximate the equilibrium probabilities of states 

(2,0,0), (2,1,1), … (2,5,1) by using the known 

equilibrium probabilities of states (2,2,2), … (2,5,2) by 

a procedure similar to step 1, part A. 

Having approximated all the equilibrium 

probabilities we can now use these to find the 

performance criterion of interest. In addition to the 

GPRS data delay and blocking probability, we can now 

also find the GSM voice average queue length and 

waiting time in queue.  

A detailed analysis of the decomposition 

approximation appears in Appendix A. The analysis 

comprises of three parts. In the first, we develop an 

exact relationship between  the equilibrium probabilities 

of queued states QS  in terms of the equilibrium 

probabilities of non-queued states NS , using a 

recursive solution given by Proposition 1. In the second 

part we find a decomposition solution to the states 

within each aggregate state, based on all the known 

equilibrium probabilities. Finally an algorithm is given 

which calculates all the equilibrium probabilities in the 

correct order.

5. Results and Conclusions 

Several results are presented in figures 3 – 7. In all 

cases simulation results are presented alongside the 

decomposition approximation for validation of the 

approximation. The main usefulness in the 

approximation is to estimate the impact of the delayed 

release of GPRS data channels on GSM voice call 

queuing.

Figure 3 shows the average GSM voice queue length 

versus GPRS data utilization (
ddd / ), for the 

2(1,1)30 non-preemptive GPRS system, i.e. with total 

channels N =2; dedicated channels for GPRS data 

dN =1; shared GSM/GPRS channels 
vN =1; and the 

maximum number of GPRS data packets that are 

allowed in the system M =30. Here two curves are 

shown for two different values of , the ratio of GSM 

voice holding time to that of GPRS data:  = 10 and 

100. The GSM voice utilization is fixed at 5.0v
.

The results indicate that as we increase , the 

decomposition approximation becomes very accurate in 

predicting the GSM voice queue length (note that for 

=100 the two curves are essentially superimposed). 

We also note that the decomposition approximation 

slightly exaggerates the GSM voice queuing delays. 

Figure 4 and 5 show similar results for larger systems: 

8(4,4)100, with 
v
= 2.5, and = 100 and 300; and 

50(25,25)100, with v = 25.3, and = 300 and 1000 

respectively2.

We note that unlike the previous decomposition 

approximations in [2], the decomposition approximation 

for Non-preemptive priority does depend on . We 

also note from both these figures that while keeping all 

other factors constant, as we increase , the mean 

GSM voice queue length decreases. This is what one 

might expect, since if the GSM voice calls take longer 

to complete as compared to GPRS data, the proportion 

of time that a call has to wait for GPRS data reduces. 

Figure 6 compares the Non-preemptive priority 

results with Preemptive priority for the 2(1,1)30 system 

studied above, with 
v
= 0.5. As expected we note that 

the GPRS data queues are marginally shorter for Non-

preemptive priority systems as compared with 

preemptive priority systems. We see here that the 

decomposition approximation is useful in depicting the 

difference between the preemptive priority vs. non-

preemptive priority schemes. Figure 7 shows the mean 

GSM voice waiting time 
VEW , for the 8(4,4)100 non-

preemptive priority GPRS system, with the mean GPRS 

data holding time 
d1 = 2 seconds. Here again we note 

that the approximation is quite useful and becomes more 

accurate for larger values of . It may also be noted 

that although the mean GSM voice queue length is 

inversely proportional to , the mean waiting GSM 

voice waiting time is not heavily dependent on the value 

of . This is due to the fact that the GSM voice arrival 

rate also reduces when we increase , while keeping 

v
 constant. 

Based on these results we can conclude that for low 

to medium traffic loading of GPRS data, the impact on 

GSM voice waiting time in queue is quite low (e.g. for 

d
 3, 

VEW  is less than 50 msec, see figure 7). This 

implies that the delayed release of GPRS packets can be 

conveniently implemented in GSM/GPRS hence 

simplifying the implementation of the system as 

compared to the immediate release scenario. Also, in 

comparison with the protocol studied in [7] termed as 

‘without channel de-allocation’, the delayed release 

model achieves the low voice blocking probability (as 

shown in [7]) as well as low voice queuing delay and 

seems to be the more suitable protocol.  

Finally, from the results we can also conclude that 

the decomposition approximation can be usefully 

applied to the study of complex multi-dimensional 

Markov chains where transition rates of different orders 

of magnitude exist. 

2
Here

v
 is chosen such that the voice blocking probability is 

approximately 15% in both the cases.
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Figure 1: State transition diagram for GPRS 3(2,1)5 Non-preemptive priority 

Figure 2.0.A : Step 0, part A of GPRS 3(2,1)5 example. 

Figure 2.0.B : Step 0, part B of GPRS 3(2,1)5 example. 

Figure 2.1.A : Step 1, part A of GPRS 3(2,1)5 example. 
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Figure 2.1.B : Step 1, part B of GPRS 3(2,1)5 example. 

Figure 2.2.A : Step 2, part A of GPRS 3(2,1)5 example. 

Figure 2: Decomposition of GPRS 3(2,1)5, steps (0.A-2.A). 

Note: In all the figures 2.0.A-2.2.A, only states and transitions that are used in the

calculation of the unknown equilibrium probabilities are shown. 
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Appendix A. Detailed Analysis 

In section A.1 we start by obtaining an exact 

solution to the queued states QS  in terms of the non-

queued states NS , using a recursive solution given by 

Proposition 1 below (this is used in parts B of 

Algorithm 1 below). The queued states QS , we recall, 

are those in which GSM voice calls are queued while 

competing with Non-preemptive priority GPRS data 

packets which are occupying the shared channels. The 

non-queued states NS  are those in which the above is 

not true. In section A.2 we formulate and solve the 

general decomposition problem for 0)(tV  for states 

in S , assuming that a solution to some of the queued 

states QS  is already known. Finally in section A.3 we 

develop Algorithm 1, based on Proposition 1 and the 

decomposition solutions mentioned above, to 

approximate all the equilibrium probabilities of the 

general Non-preemptive problem. 

A.1 Relating Pi,j,j’ to Pi-1,j,j’

We use the same notation as in equation 2.4 of [2] to 

describe the transition rates of the Markov chain 

)('),(),( tDtDtV .  Thus the transition rate from state 

Sx  to another state Sy is given as );( yxq . The 

following equations describe all the possible transitions 

assuming both Syx, .
i

vjjijjiq )',,1;',,(

i

vjjijjiq )',,1;',,(           if jj'
i

vjjijjiq )1',,1;',,(         if jj'
j

djjijjiq )',1,;',,(           if iNj'           (A.0)

j

djjijjiq )1',1,;',,(           if iNj'
')1',1,;',,( j

djjijjiq           if jj ' or 0)(tVQ

')',1,;',,( j

djjijjiq           if jj ' or 0)(tVQ

Figure 6: Preemptive & Non-preemptive, 
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Here we have used the shorthand notation 
i

v and

i

v  to denote the rates of departure from GSM voice 

state itV )( , due to a GSM voice arrival or departure 

respectively. Similarly 
i

d and
i

d  are the 

corresponding values for GPRS data. The non-zero 

transition rates are then given by: 

v

i

v
 for 

vNi0

v

i

v i  for 
vNi0

d

j

d
 for Mj0   (A.1) 

d

j

d j''  for Nj'0

We now define the terms 
',, jjiF  and 

',, jjiR  for 

QSjji )',,(  with the help of figure A1: 

',, jjiF  Total probability flux into state 
QSjji )',,(

other than from )',,1( jji  or )',,1( jji . If we define 

djjiPA ',1,
,

djji jPB )1'(1',1,
, )1(iNC ,

then using (A.1), and figures 1 and A2 it can be verified 

that
',, jjiF  is given as follows: 

).'(0

)'(

)'(

)'(

',,

MjorNjandCjfor

MjorNjandCjforA

MjandNjandCjforB

MjandNjandCjforBA

F jji

The boundary conditions above can be explained as 

follows. For 
QSjji )',,( , if Cj  then 

1)1( NiNiji . This implies that one 

GSM voice call is queued and all the GPRS data packets 

are being served. In this case jj '  and the state 

)',1,( jji  does not exist and hence 0A . Similarly 

when Nj'  or Mj , state )1',1,( jji  does not 

exist and 0B .

',, jjiR  Total rate out of state )',,( jji . This is given 

by (see figure A1): 
i

v

i

v

j

d

j

djjiR '

',,
.  (A.2) 

Now the following proposition gives an exact 

relationship between 
',, jjiP  and 

',,1 jjiP using the above 

definition of 
',, jjiF  and 

',, jjiR :

Proposition 1. For
QSjji )',,( ,

',, jjiP  satisfies the 

following recursive relationship: 

,,...,1',,1',,1',,1',, vjjijjijjijji NiPP  (A.3) 

with
',,1 jji
 and 

',,1 jji
 also given recursively by 

v

v

jji

i

vjji

jji

i

vjji

jji

Ni

Ni
R

F

0

1
',,

1

',,

',,

1

',,

',,1
  (A.4) 

v

v

jji

i

vjji

i

v

jji

Ni

Ni
R

0

1
',,

1

',,

1

',,1
     (A.5) 

i

v
 and i

v
 are given by (A.1). 

The above Proposition can be proved by writing the 

local balance equation at )',,( jji  and then using 

induction on i .

We note that Proposition 1 has written 
',, jjiP  for 

QSjji )',,(  such that it only depends on the following 

three adjacent states )',,1( jji , )',1,( jji , )1',1,( jji .

We also note that proposition 1 gives an exact 

relationship between these states. 

A.2 Decomposition of Aggregate state itV )(

We now formulate and solve the decomposition 

problem for states in the aggregate state itV )( .

Transitions to and from such a state )',,( jji  are shown 

in figure A1. The set of such states consists of states in 

NS  whose equilibrium probabilities need to be 

calculated, and states in 
QS  whose equilibrium 

probabilities have already been approximated in an 

earlier step. We can solve for the unknown equilibrium 

probabilities by writing the local balance equations. The 

balance equations are written down by equating the 

probability flux in each direction across the cuts shown 

in figure A2 by the dotted lines. 

).()(

)(

)(

)(

)(

2

,,1,1,0,0,

1 ,,,,1,

2,1,,2,,1,

1,,1,,,

,,1,1,

2,2,1,1,

1,1,0,0,

ipipPPP

fiNPP

ffiNPP

fiNPP

iNPP

PP

PP

QviNMiii

M

iNj jiddiNMidiNMi

iNidiNiddiNiNidiNiNi

iNiddiNiNidiNiNi

diNiNidiNiNi

didi

didi

               (A.7) 

Here we have defined 

jid f ,
 Probability flux from state 

QSiNji )1,,(  into state 
NSiNji ),1,(

  = 
1,,)1( iNjid PiN ,           (A.8) 

and

QSjjitsjj

jjiQ Pip
)',,(..',

',,)( .            (A.9) 

This gives us M  unknowns, i.e. 

,,,, ,,1,1,0,0, iNMiii PPP  which can be solved for. In fact 

a closed form equation for these can be written down. It 

can be shown that a closed form solution to the above 

equations is given by the following: 
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If we define 
jiP,
 as the non-queued states: 

MjiNP

iNjP
P

iNji

jji

ji 1

0

,,

,,

,
        (A.10) 

Then

)(

10

1

)1(

0

1

1

,

)1(

0,

)!(!

)()(

iNM

k

k

d

iN

d
iN

j

j

d

M

iNj

iNj

l

liN

iNk

ki

liNj

d
Qv

i

iNiNj

iN

f

iN
ipip

P

     (A.11) 

MjiN
iN

f

iNiNiN
P

iNj
j

P

P
iNj

l

liN

iNk

ki

liNj

d

iNj

d

iN

d
i

j

d
i

ji

1
)!(

1
!

)1(

0

1

1

,

)1()(

0,

0,

,

              (A.12) 

A.3 Algorithm for Solution to Non-preemptive 

Problem

In section A.1 we developed a recursive equation 

which showed how the equilibrium distribution of states 

in QS  could be calculated from those of states in NS ,

using intermediate parameters 
',, jji
 and 

',, jji
. In 

section A.2 we showed how the decomposition solution 

to the states in each aggregate state could be found. We 

now give the algorithm which calculates all the 

equilibrium probabilities in the correct order as also 

required by Proposition 1. We of course also calculate 

the intermediate parameters  
',, jji
 and 

',, jji
.

The algorithm proceeds in steps 0  through 
vN . In 

step  i , part A of the algorithm finds, using the 

decomposition solution of section A.2, the equilibrium 

distribution of all the states in itV )( , which belong to 

NS . Here it uses the solution to the equilibrium 

probabilities of states in itV )( , belonging to QS ,

which were obtained in an earlier step. Note that in step 

0 , only states in NS  exist (see figure 1). 

In step i , part B of the algorithm finds the 

equilibrium probabilities of all the states in QS , with 

iNjitV ,)( , and iNj' , by using the exact 

dependence of these on the equilibrium probabilities of 

states in itV )(  and states with 1' iNj  both 

belonging to NS , using Proposition 1. 

Algorithm 1. The following algorithm is used to 

calculate the decomposition approximation 
',, jjiP , to the 

equilibrium probability distribution of the Markov chain 

formed by )}('),(),({ tDtDtV  whose transitions are 

given by (A.0). References to ‘Steps’ in the algorithm, 

refer to Step 'i , which consists of Parts A and B. 

For 0'i  to 1vN  (Step 'i )

   Part A. 

      Calculate ,.,.'iP for NSi,.,.)(  by using the  

      decomposition technique given by equations (A.11),  

      (A.12) of section A.2. 

   Part B. 

      Let '' iNj

      For 'jj  to M

         For 1vNi , step 1 , to 'i

            Calculate 
',,',, , jjijji
 using equations (A.4),  

            (A.5) 

         Next i

         For 1'ii  to vN

            Calculate ',, jjiP  using equation (A.3) 

         Next i
      Next j

Next 'i

(Step vN ) Calculate ,.,.vNP  for Nv SN ,.,.)(  by 

using equations (A.11), (A.12). 

Let us now give expressions for our performance 

criterion. The mean GPRS data queue length is simply 

     

Sjji

jjiD jPEQ
)',,(

',, ,

vN

i

M

j

Nj

iNjj

jjiPj
0 0

),min(

),min('

',, .    (A.13) 

The mean GPRS data blocking probability is 

SjMi

jMiBD PP
)',,(

',, ,

vN

i

NM

iNMj

jMiP
0

),min(

),min('

',, .      (A.14) 

The mean number of queued GSM voice calls is 

QSjji

jjiV PjNiEQ
)',,(

',,)}'(,0max{    (A.15) 

The mean GSM voice blocking probability was 

already given by (3.1). Finally, the mean waiting time of 

all non-blocked GSM voice calls is given by: 

)1(/ BVvvV PEQEW .
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Figure A1: Transitions to and from state NSjji )',,(

Figure A2: Transitions in Non-preemptive Markov chain for states in QS
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